Hydrogen formation from glycolate driven by reversed electron transport in membrane vesicles of a syntrophic glycolate-oxidizing bacterium.

نویسندگان

  • M Friedrich
  • B Schink
چکیده

Oxidation of glycolate to 2 CO2 and 3 H2 (delta G degrees' = +36 kJ/mol glycolate) by the proton-reducing, glycolate-fermenting partner bacterium of a syntrophic coculture (strain FlGlyM) depends on a low hydrogen partial pressure (pH2). The first reaction, glycolate oxidation to glyoxylate (E zero' = -92 mV) with protons as electron acceptors (E zero' = -414 mV), is in equilibrium only at a pH2 of 1 microPa which cannot be maintained by the syntrophic partner bacterium Methanospirillum hungatei; energy therefore needs to be spent to drive this reaction. Glycolate dehydrogenase activity (0.3-0.96 U.mg protein-1) was detected which reduced various artificial electron acceptors such as benzyl viologen, methylene blue, dichloroindophenol, K3[Fe(CN)6], and water-soluble quinones. Fractionation of crude cell extract of the glycolate-fermenting bacterium revealed that glycolate dehydrogenase, hydrogenase, and proton-translocating ATPase were membrane-bound. Menaquinones were found as potential electron carriers. Everted membrane vesicles of the glycolate-fermenting bacterium catalyzed ATP-dependent H2 formation from glycolate (30-307 nmol H2.min-1 x mg protein-1). Protonophores, inhibitors of proton-translocating ATPase, and the quinone analog antimycin A inhibited H2 formation from glycolate, indicating the involvement of proton-motive force to drive the endergonic oxidation of glycolate to glyoxylate with concomitant H2 release. This is the first demonstration of a reversed electron transport in syntrophic interspecies hydrogen transfer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energetics of syntrophic fatty acid oxidation

Fatty acids are key intermediates in methanogenic degradation of organic matter in sediments as well as in anaerobic reactors. Conversion of butyrate or propionate to acetate, (CO2), and hydrogen is endergonic under standard conditions, and becomes possible only at low hydrogen concentrations (10 4--10-5 bar). A model of energy sharing between fermenting and methanogenic bacteria attributes a m...

متن کامل

Solubilization, partial purification, and reconstitution of the glycolate/glycerate transporter from chloroplast inner envelope membranes.

The glycolate/glycerate transporter of spinach (Spinacia oleracea L.) chloroplast inner envelope membranes was solubilized by treatment of the membranes with sodium cholate. Mixtures of the cholate extracts and soy asolectin were subjected to gel filtration to remove the detergent. The reconstituted vesicles were frozen, thawed, and sonicated in a buffer that contained 10 millimolar d-glycerate...

متن کامل

Bile Acid Sodium Symporter BASS6 Can Transport Glycolate and Is Involved in Photorespiratory Metabolism in Arabidopsis thaliana.

Photorespiration is an energy-intensive process that recycles 2-phosphoglycolate, a toxic product of the Rubisco oxygenation reaction. The photorespiratory pathway is highly compartmentalized, involving the chloroplast, peroxisome, cytosol, and mitochondria. Though the soluble enzymes involved in photorespiration are well characterized, very few membrane transporters involved in photorespiratio...

متن کامل

Photosynthetic and Photorespiratory Carbon Metabolism in Mesophyll Protoplasts and Chloroplasts Isolated from Isogenic Diploid and Tetraploid Cultivars of Ryegrass (Lolium perenne L.).

Photosynthetic (14)CO(2) fixation, [(14)C]glycolate formation, and the decarboxylation of [1-(14)C]glycolate and [1-(14)C]glycine by leaf mesophyll protoplasts isolated from isogenic diploid and tetraploid cultivars of ryegrass (Lolium perenne L.) were examined. The per cent O(2) inhibition of photosynthesis in protoplasts from the tetraploid cultivar was less than that of the diploid line at b...

متن کامل

Yellow Mutant of Chlorella vulgaris

An antiserum to tobacco glycolate oxidase has been prepared by injection of the purified enzyme into rabbits. Double gel diffusion tests between the antiserum and purified antigen and also with a crude tobacco preparation gave a single immunoprecipitation band. Crude extracts of Euglena gracilis Z Klebs, containing glycolate dehydrogenase, and of Chlorella vulgaris 211-llh/20, containing glycol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • European journal of biochemistry

دوره 217 1  شماره 

صفحات  -

تاریخ انتشار 1993